

an introduction to advanced usage

GNU Bash

James Pannacciulli
Systems Engineer

http://talk.jpnc.info/bash_lfnw_2017.pdfhttp://talk.jpnc.info/bash_lfnw_2017.pdf

Concise!Concise!

● This talk assumes you are familiar with basic
command line concepts.

● This talk covers Bash, not the wealth of CLI utilities
available on GNU/Linux and other systems.

● This talk assumes a GNU/Linux machine, though
most everything here should be fairly portable.

● Bash is flexible and fun, don’t forget to enjoy the
time you spend using it!

Notes about the presentation:

Command Types
File:

External executable file.

Builtin:

Command compiled in as
part of Bash.

Keyword:

Reserved syntactic word.

Function:

User definable, named
compound command.

Alias:

User definable, simple
command substitution.

Getting Help with Bash and with your OS
type:

Determine type of command,
list contents of aliases and

functions.

help:

Display usage information about
 Bash builtins and keywords.

apropos:

Search man pages.

man:

System manual.

info:

Advanced manual system
primarily used for GNU

programs.

General reference commands to get started:

 man bash

 man man

 man -a intro

help

help help

info info

info

Some Useful Definitions
Technical Terms as Defined and Used in Bash Documentation

word

list

name

parameter

Sequence of characters considered to be a
single unit.

Sequence of one or more commands or
pipelines.

A word consisting only of alphanumeric
characters and underscores. Can not begin
with a numeric character.

An entity that stores values. A variable is a
parameter denoted by a name ; there are
also positional and special parameters.

Return Status

Success: Command returns a status of 0.

Failure: Command returns a non-zero status.

➢Valid return values range from 0 to 255.

➢The return value of the last command to have
executed is captured in the special parameter $?.

➢Many programs signal different types of failure or
error with different return values, which allows
us to handle errors programmatically.

List Operators

list0; list1

list0 & list1

list0 && list1

list0 || list1

Execute list0, then execute list1. Same
as separation by newline.

Execute list0 in a background subshell
and simultaneously execute list1.

Execute list0, then execute list1 only if
list0 returns status 0.

Execute list0, then execute list1 only if
list0 returns a non-zero status.

Conditionals: if
if list0
 then list1
fi

if list0
 then list1
 else list2
fi

if list0
 then list1
 elif list2
 then list3
 else list4
fi

Evaluate list0, then evaluate list1
only if list0 returns status 0.

Evaluate list0, then evaluate list1
only if list0 returns status 0.

Otherwise, evaluate list2.

Evaluate list0, then evaluate list1
only if list0 returns status 0.

Otherwise, evaluate list2, then
evaluate list3 only if list2 returns

status 0. Otherwise, evaluate list4.

Tests
[expression]
test expression

Evaluate conditional expression with the test builtin (or the
analogous /bin/[or /bin/test commands if specified).

[[expression]]
Evaluate conditional expression with the [[keyword.
● Word splitting is not performed during any parameter

expansion.
● The righthand side of a string comparison (==, !=) is

treated as a pattern when not quoted, and as a string
when quoted.

● Regular Expressions may be matched with the =~
operator.

● Short circuiting logical operators && and || can be used to
combine condition expressions.

Common Conditional Expressions
See them all by executing help test

[[-e file]]

[[-f file]]

[[-d file]]

[[-t fd]]

[[file0 -nt file1]]

[[file0 -ef file1]]

[[-n string]]

[[-z string]]

[[string0 == "string1"]]

[[string0 != "string1"]]

[[string == pattern]]

[[string =~ regex]]

file exists

file is a regular file

file is a directory

fd is open and refers to a terminal

file0 is newer than file1

file0 is a hard link to file1

string is non-empty

string is empty

string0 and string1 are the same

string0 and string1 are not the same

string matches pattern

string matches regular expression

Pattern Matching
Pattern matching is used in Bash for the [[and

case keywords, pathname expansion, and
some types of parameter expansion.

*

?

[character class]

Matches any string, including null.

Matches any single character.

Matches any one of the characters

enclosed between [and].

[^...] matches the complement (any character not in the class)

[x-z] matches the range of characters from x to z

[[:class:]] matches according to these POSIX classes:

alnum alpha ascii blank cntrl digit graph lower print punct space

Conditionals: case

case word in

 pattern0)

 list0;;

 pattern1 | pattern2)

 list1;;

esac

Match word against each
pattern sequentially.

When the first match is
found, evaluate the list

corresponding to that
match and stop matching.

The | (pipe) character between two patterns entails
a match if either pattern matches (inclusive OR).

Parameters
Positional Parameters: $1 $2 $3 $4 $5 $6 $7 $8 $9 ${10} ...

Parameters passed to salient command, encapsulating words on
the command line as arguments.

Special Parameters: $* $@ $# $- $$ $0 $! $? $_

Parameters providing information about positional parameters,
the current shell, and the previous command.

Variables: name=string

Parameters which may be assigned values by the user. There are
also some special shell variables which may provide information,

toggle shell options, or configure certain features.

 For variable assignment, “=” must
not have adjacent spaces.

Parameter Expansion: Conditionals
(check if variable is unset, empty, or non-empty)

${param-default}

${param=default}

${param+alternate}

${param?error}

Treat empty as unset:

${param:-default}

${param:=default}

${param:+alternate}

${param:?error}

default

name=default

–

error

default

name=default

–

error

unset param
–

–

alternate

–

default

name=default

–

error

param=”gnu”
gnu

gnu

alternate

gnu

gnu

gnu

alternate

gnu

param=””

Parameter Expansion: Substrings

Extraction:

${param:offset}

${param:offset:length}

Removal from left edge:

${param#pattern}

${param##pattern}

Removal from right edge:

${param%pattern}

${param%%pattern}

drake

dr

ndrake

ke

mandr

m

param=”mandrake”

offset of 3, length of 2

pattern is '*a'

pattern is 'a*'

Parameter Expansion: Pattern Substitution

Substitution:

${param/pattern/string}

${param//pattern/string}

Substitute at left edge:

${param/#pattern/string}

Substitute at right edge:

${param/%pattern/string}

Xuntu

XXtu

Xbuntu

ubuntX

param=”ubuntu”

pattern is 'u?', string is 'X'

pattern is 'u', string is 'X'

Parameter Expansion:
Indirection, Element Listing, and Length

Indirect expansion:

${!name0}

List names matching prefix “na”:

${!na*} or “${!na@}”

List keys in array:

${!array[*]} or “${!array[@]}”

Expand to length:

${#name0}

${#array}

hello

name0=”name1”; name1=”hello”;
array=(gnu not unix)

name0 name1

0 1 2

5
3

Indexed Arrays
Assign an array by elements:

 array=(zero one two "three and more")

Add to an array or modify an element:

 array+=("four and beyond" [0]=ZERO)

Recreate array with spaces in elements as underscores:

 array=("${array[@]// /_}")

Recreate array only with elements from index 2 to 4:

 array=("${array[@]:2:3}")

Print element at index 1 of array (second element):

 echo "${array[1]}"

Print array indexes:

 echo ${!array[@]}

Arithmetic Expressions
((math and stuff))

name++
name--

++name
--name

increment name after evaluation
decrement name after evaluation

increment name before evaluation
decrement name before evaluation

➢ Can be used as a test, returning 0 if the
comparison, equality, or inequality is true, or if
the calculated number is not zero.

➢ Can provide in-line expansion when used like
command substitution – $((math)).

➢ Bash does not natively support floating point.

- + * / % ** <= >= < > == != && ||

Brace Expansion
Arbitrary Word Generation

String generation:

prefix{ab,cd,ef}suffix

Sequence generation:

prefix{x..y}suffix

Sequencing by specified increment (Bash 4+):

prefix{x..y..incr}suffix

Brace expansion may be
nested and combined.

The prefix and suffix
are optional.

Bash can complete a list of files
into nested brace expansion

format with the ESC-{ key
combination. All key bindings

may be displayed with bind -P.

Iteration:
Continuously loop over list of commands delineated by

the keywords do and done.
while until for select

Conditionals:
Execute list of commands only under certain conditions.

if case

Command groups:
Grouped list of commands, sharing any external

redirections and whose return value is that of the list.
(list) { list; }

Compound Commands

While and Until Loops
(Typically) iterate based on an external resource

while list0; do list1; done

Execute list0; if success, execute list1 and repeat.
Continue until list0 returns a non-zero status (fails).

until list0; do list1; done

Execute list0; if failure, execute list1 and repeat.
Continue until list0 returns a status of 0 (succeeds).

The following construct is incredibly handy for
processing lines of text: while read

For and Select Loops
Iterate based on command line arguments

for name in words; do list; done

During each iteration, assign name the value of the next word, then
execute list. Repeat until all words have been exhausted.

for ((expr0 ; expr1 ; expr2)); do list; done

Evaluate expr0, then loop over ((expr1)) || break; { list; ((expr2)); } –
that is to say execute list only if expr1 returns non-zero status (fails),
evaluating expr2 after each iteration. The expressions are evaluated

as arithmetic expressions, and the list as a regular command list.

select name in words; do list; done

Create a menu with each word as an item. When the user makes a
selection, name is assigned the value of the selected word, REPLY is

assigned the index number of the selection, and list Is executed.

initialization condition afterthought

Command Groups
Treat group as single unit for redirection or branching

Subshell:

Evaluate list of commands in a subshell, meaning that its
environment is distinct from the current shell and its

parameters are contained.

(list)

Group command:

Evaluate list of commands in the current shell, sharing
the current shell's environment and parameter scope.

{ list; }

The spaces and trailing
semicolon are obligatory.

The righthand side of a
pipe is always a subshell.

Associative Arrays
Assign an array by elements:

 declare -A array=(

 [item]=cheese [price]=6.75)

Add to or modify elements in an array:

 array+=([type]="fresh curds")

Copy array:

 declare -n array2=array

List array keys:

 echo "${!array[@]}"

List array values:

 echo "${array[@]}"

Associative arrays
(array[key]=value) may be

created in Bash 4 and greater
with declare -A array.

Redirection
Controlling the input, output, error, and other streams

list > file

list >> file

list < file

list0 | list1

Overwrite/create file with output from list

Append/create file with output from list

Feed file to list as input

Use output from list0 as input to (list1)

➢ If not specified, fd 1 (STDOUT) is assumed when
 redirecting output.

➢ Alternative file descriptors may be specified by
 prepending the fd number, e.g. 2> file to
 redirect fd 2 (STDERR) to a file.

➢ To redirect to a file descriptor, prepend '&' and the
 fd number, e.g. 2>&1 to redirect STDERR to the
 current target during parsing for STDOUT.

Command and Process Substitution
Command substitution:

Replace the command substitution in-line with the
output of its subshell. Turns output into arguments.

$(list)

Process substitution:

Replace the process substitution with a file descriptor
which is connected to the input or output of the

subshell. Allows commands in list to act as a file.

>(list) <(list)

Functions
Functions are compound commands which are

defined in the current shell and given a function name,
which can be called like other commands.

func.name () compound_cmd
Assign compound_cmd to function named func.name.

func.name () compound_cmd [>,<,>>] file
Assign compound_cmd to function named func.name;
function will always redirect to (>), from (<), or append
to (>>) the specified file. Multiple file descriptors may

be specified, for instance: >out.file 2>err.log.

Session Portability
Import elements from current session into a

distinct local or remote session.
sudo bash -c “
$(declare -p parameters;
 declare -f functions)
code and stuff”

Import parameters and
functions into root shell,
then run code and stuf.

ssh remote_host “
$(declare -p parameters;
 declare -f functions)
code and stuff”

Import parameters and
functions into remote shell,

then run code and stuf.

➢ declare can list parameters and functions from
 the current shell, or can set parameter attributes.

➢ When sourcing or interpolating Bash code, be
 mindful of shell options which affect parsing,
 such as extglob, if the code relies on that syntax.

A Few Good Links

➢ http://www.gnu.org/software/bash/

➢ http://tiswww.case.edu/php/chet/bash/NEWS

➢ http://tldp.org/LDP/abs/html/index.html

➢ http://wiki.bash-hackers.org/doku.php

➢ http://git.jpnc.info/parssh/

http://www.gnu.org/software/bash/
http://tiswww.case.edu/php/chet/bash/NEWS
http://tldp.org/LDP/abs/html/index.html
http://wiki.bash-hackers.org/doku.php
http://git.jpnc.info/parssh/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

