

an introduction to advanced usage

GNU Bash

James Pannacciulli
Systems Engineer in Web Hosting

http://talk.jpnc.info/bash_linuxcon-eu.pdfhttp://talk.jpnc.info/bash_linuxcon-eu.pdf

Concise!Concise!

● This talk assumes you are familiar with basic
command line concepts.

● This talk covers Bash, not the wealth of CLI utilities
available on GNU/Linux and other systems.

● This talk assumes a GNU/Linux machine, though
most everything here should be fairly portable.

● This talk is mostly compatible with Bash 3, I'll try to
note any examples which require Bash 4.

● Bash is fantastic, enjoy the time you spend with it!

Notes about the
presentation:

Command Types
File:

External executable file.

Builtin:

Command compiled in as
part of Bash.

Keyword:

Reserved syntactic word.

Function:

User definable, named
compound command.

Alias:

User definable, simple
command substitution.

Getting Help with Bash and with your OS
type:

Determine type of command,
list contents of aliases and

functions.

help:

Display usage information about
Bash builtins and keywords.

apropos:

Search man pages.

man:

System manual.

info:

Advanced manual system
primarily used for GNU

programs.

General reference commands worth running:

 man bash

 man man

 man -a intro

help

help help

info info

info

Some Useful Definitions

word

list

name

parameter

Sequence of characters considered to be a
single unit.

Sequence of one or more commands or
pipelines.

A word consisting only of alphanumeric
characters and underscores. Can not begin
with a numeric character.

An entity that stores values. A variable is a
parameter denoted by a name ; there are
also positional and special parameters.

Return Status

Success:

Command should return a status of 0.

Failure:

Command should return a non-zero status.

➢Return values can range from 0 to 255.

➢The return value of the last command to have
executed is captured in the special parameter $?.

➢Many programs signal different types of failure
with different return values.

Conditionals: if
if list1; then list2; fi

Evaluate list1, then evaluate list2 only if list1 returns a

status of 0.

if list1; then list2; else list3; fi

Evaluate list1, then evaluate list2 only if list1 returns a status
of 0. Otherwise, evaluate list3.

if list1; then list2; elif list3; then list4; else list5; fi

Evaluate list1, then evaluate list2 only if list1 returns a status
of 0. Otherwise, evaluate list3, then evaluate list4 only if list3

returns a status of 0. Otherwise, evaluate list5.

Tests

[[-n string]]
[[-z string]]

[[string1 == "string2"]]
[[string1 != "string2"]]

[[string == pattern]]
[[string =~ regex]]

[[-e file]]
[[-f file]]
[[-d file]]

[[-t fd]]

string is non-empty
string is empty
string1 and string2 are the same
string1 and string2 are not the same
string matches pattern
string matches regular expression
file exists
file is a regular file
file is a directory
fd is open and refers to a terminal

[expression] or test expression
Evaluate conditional expression with the test builtin.

[[expression]]
Evaluate conditional expression with the [[keyword; word

splitting is not performed during any parameter expansion.
The righthand side of a string comparison (==, !=) is treated as

a pattern when not quoted, and as a string when quoted.

Pattern Matching
Pattern matching is used in Bash for the [[and

case keywords, pathname expansion, and
some types of parameter expansion.

*

?

[character class]

Matches any string, including null.

Matches any single character.

Matches any one of the characters

enclosed between [and].

[^...] matches the complement (any character not in the class)

[x-z] matches the range of characters from x to z

[[:class:]] matches according to these POSIX classes:

alnum alpha ascii blank cntrl digit graph lower print punct space

Conditionals: case

case word in

 pattern1)

 list1;;

 pattern2 | pattern3)

 list2;;

esac

Match word against each
pattern sequentially.

When the first match is
found, evaluate the list

corresponding to that
match and stop matching.

The | (pipe) character between two patterns
entails a match if either pattern matches (OR).

Parameters
Positional Parameters: $1 $2 $3 $4 $5 $6 $7 $8 $9 ${10} ...

Parameters passed to salient command, encapsulating words on
the command line as arguments.

Special Parameters: $* $@ $# $- $$ $0 $! $? $_

Parameters providing information about positional parameters,
the current shell, and the previous command.

Variables: name=string

Parameters which may be assigned values by the user. There are
also some special shell variables which may provide information,

toggle shell options, or configure certain features.

 For variable assignment, “=” must
not have adjacent spaces.

Parameter Expansion: Conditionals
(check if variable is unset, empty, or non-empty)

${param-default}

${param=default}

${param+alternate}

${param?error}

Treat empty as unset:

${param:-default}

${param:=default}

${param:+alternate}

${param:?error}

default

name=default

–

error

default

name=default

–

error

unset param
–

–

alternate

–

default

name=default

–

error

param=”gnu”
gnu

gnu

alternate

gnu

gnu

gnu

alternate

gnu

param=””

Parameter Expansion: Substrings

Extraction:

${param:offset}

${param:offset:length}

Removal from left edge:

${param#pattern}

${param##pattern}

Removal from right edge:

${param%pattern}

${param%%pattern}

ecar

ec

ecar

ar

race

ra

param=”racecar”

offset of 3, length of 2

pattern is '*c'

pattern is 'c*'

Parameter Expansion: Pattern Substitution

Substitution:

${param/pattern/string}

${param//pattern/string}

Substitute at left edge:

${param/#pattern/string}

Substitute at right edge:

${param/%pattern/string}

raTcar

raTTr

Tacecar

racecaT

param=”racecar”

pattern is 'c?', string is 'T'

pattern is 'r', string is 'T'

Parameter Expansion:
Indirection, Listing, and Length

Indirect expansion:

${!param}

List names matching prefix “pa”:

${!pa*} or “${!pa@}”

List keys in array:

${!name[*]} or “${!name[@]}”

Expand to length:

${#param}

long

param=”parade”; parade=”long”;
name=(gnu not unix)

parade param

0 1 2

6

Indexed Arrays
Assign an array by elements:

 array=(zero one two "three and more")

Add an element to an array:

 array+=("four and beyond")

Recreate array with spaces in elements as underscores:

 array=("${array[@]// /_}")

Recreate array only with elements from index 2 to 4:

 array=("${array[@]:2:3}")

Print element at index 1 of array (second element):

 echo "${array[1]}"

Print array indexes:

 echo ${!array[@]}

Associative arrays are
available in Bash 4

and greater.

Arithmetic Expressions
((math and stuff))

name++
name--

++name
--name

increment name after evaluation
decrement name after evaluation

increment name before evaluation
decrement name before evaluation

➢ Can be used as a test, returning 0 if the
comparison, equality, or inequality is true, or if
the calculated number is not zero.

➢ Can provide in-line expansion when used like
command substitution – $((math)).

➢ Bash does not natively support floating point.

- + * / % ** <= >= < > == != && ||

Brace Expansion
Arbitrary Word Generation

String generation:

prefix{ab,cd,ef}suffix

Sequence generation:

prefix{x..y}suffix

Sequencing by specified increment (Bash 4+):

prefix{x..y..incr}suffix

Brace expansion may be
nested and combined.

The prefix and suffix
are optional.

Bash can complete a list of files
into nested brace expansion

format with the ESC-{ key
combination. All key bindings

may be displayed with bind -P.

Iteration:
Continuously loop over list of commands delineated by

the keywords do and done.
while until for select

Conditionals:
Execute list of commands only if certain conditions are

met.
if case

Command groups:
Grouped list of commands, sharing any external

redirections and whose return value is that of the list.
(list) { list; }

Compound Commands

While and Until Loops
(Typically) iterate based on an external resource

while list1; do list2; done

Execute list1; if success, execute list2 and repeat.
Continue until list1 returns a non-zero status (fails).

until list1; do list2; done

Execute list1; if failure, execute list2 and repeat.
Continue until list1 returns a status of 0 (succeeds).

The following construct is incredibly handy for
processing lines of text: while read

For and Select Loops
Iterate based on command line arguments

for name in words; do list; done

During each iteration, assign name the value of the next word, then
execute list. Repeat until all words have been exhausted.

for ((expr1 ; expr2 ; expr3)); do list; done

Evaluate expr1, then loop over expr2 && { list; expr3; } – that is to say
execute list until expr2 returns non-zero status (fails), evaluating

expr3 after each iteration. The expressions are evaluated as
arithmetic expressions, and the list as a regular command list.

select name in words; do list; done

Create a menu with each word as an item. When the user makes a
selection, name is assigned the value of the selected word, REPLY is

assigned the index number of the selection, and list Is executed.

initialization condition afterthought

Command Groups
Subshell:

Evaluate list of commands in a subshell, meaning that its
environment is distinct from the current shell and its

parameters are contained.

(list)

Group command:

Evaluate list of commands in the current shell, sharing
the current shell's environment and parameter scope.

{ list ; }

The spaces and trailing
semicolon are obligatory.

The righthand side of a
pipe is always a subshell.

Redirection
Controlling the input, output, error, and other streams

list > file

list >> file

list < file

list1 | list2

Overwrite/create file with output from list

Append/create file with output from list

Feed file to list as input

Use output from list1 as input to (list2)

➢ If not specified, fd 1 (STDOUT) is assumed when
 redirecting output.

➢ Alternative file descriptors may be specified by
 prepending the fd number, e.g. 2> file to
 redirect fd 2 (STDERR) to a file.

➢ To redirect to a file descriptor, append '&' and the
 fd number, e.g. 2>&1 to redirect STDERR to the
 current target during parsing for STDOUT.

Command and Process Substitution
Command substitution:

Replace the command substitution in-line with the
output of its subshell. Turns output into arguments.

$(list)

Process substitution:

Replace the process substitution with a file descriptor
which is connected to the input or output of the

subshell. Allows commands in list to act as a file.

>(list) <(list)

Functions
Functions are compound commands which are

defined in the current shell and given a function name,
which can be called like other commands.

func.name () compound_cmd
Assign compound_cmd to function named func.name.

func.name () compound_cmd [>,<,>>] file
Assign compound_cmd to function named func.name;
function will always redirect to (>), from (<), or append
to (>>) the specified file. Multiple file descriptors may

be specified, for instance: >out.file 2>err.log.

Session Portability
Import elements from current session into a

new local or remote session.
sudo bash -c “
$(declare -p parameters;
 declare -f functions)
code and stuff”

Import parameters and
functions into root shell,
then run code and stuf.

ssh remote_host “
$(declare -p parameters;
 declare -f functions)
code and stuff”

Import parameters and
functions into remote shell,

then run code and stuf.

➢ declare can list parameters and functions from
 the current shell, or can set parameter attributes.

➢ When sourcing or interpolating Bash code, be
 mindful of shell options which affect parsing,
 such as extglob, if the code relies on that syntax.

Example code from the talk
true
echo $?

false
echo $?

if fgrep -qi gentoo /etc/os-release
then
 echo "gentoo"
else
 echo "not gentoo"
fi

if fgrep -qi arch /etc/os-release
then
 echo "arch"
else
 echo "not arch"
fi

Example code from the talk
[[-n "much content!"]]

[[-z "wow!"]]

[[-e /etc]] && echo exists
[[-f /etc]] && echo regular file
[[-d /etc]] && echo directory

[[-t 0]]

[[-t 0]] < /etc/os-release

if [["abc" == "abc"]]
then
 echo "yep"
else
 echo "nope"
fi

Example code from the talk
if [["abc" == "c"]]
then
 echo "yep"
else
 echo "nope"
fi

if [["abc" == *c]]
then
 echo "yep"
else
 echo "nope"
fi

[["linuxcon europe" == [a-z]*[^[:digit:]]]]

[["linuxcon europe" == *[^d-h]]]

Example code from the talk
case one in
 o)
 echo 'o'
 ;;
 o?e)
 echo 'o?e'
 ;;
 o*)
 echo 'o*'
 ;;
 *)
 echo 'nope'
 ;;
esac

set -- one two "three four" five
printf "%s\n" "\$1: $1" "\$2: $2" "\$3: $3" "\$4: $4" "\$5: $5" "\$#: $#"\
 "\$*: $*" "\$@: $@"

param=gnu; echo "${param:-default value for expansion}"

Example code from the talk
unset param; echo "${param:-default value for expansion}"

echo "${param:?a nifty custom error string}"

echo "${PATH:+yes you have a PATH, great job}"

echo "${BASH_VERSION:0:1}"

echo "${PATH##*:}"

echo -e "${PATH//:/\\n}"

param=PATH; printf "%s\n\n" "\$param: ${param}"\
 "\${!param}: ${!param}" "\${!param%%:*}: ${!param%%:*}"

echo ${!BASH*}

echo "${#PATH}"

array=(zero one two "three and more")
printf "%s\n" "${array[@]}"

Example code from the talk
array+=("four and beyond")
printf "%s\n" "${array[@]}"

array=("${array[@]// /_}")
printf "%s\n" "${array[@]}"

array=("${array[@]:2:3}")
printf "%s\n" "${array[@]}"

echo ${!array[@]}

echo $((3 + 11))

((3 >= 5))

((0))

echo $((i++))

echo bash{,e{d,s},ful{,ly,ness},ing}

Example code from the talk
echo {1..5}{0,5}%

echo {10..55..5}%

echo {a..z..12}

touch testfile && cp -v testfile{,.bak}

man{,}

while read var1 var2
do
 echo $var2 $var1
done

count=0
until ((++count > 3))
do
 echo $count
done

Example code from the talk
for i in one two "three four"
do
 echo "_-_-_-$i-_-_-_"
done

for ((i=0 ; i<5 ; i++))
do
 echo $i
done

select choice in one two "three four"
do
 echo "$REPLY : $choice"
done

for file in *
do
 echo "$(stat -c"%a %A" "$file") $(md5sum "$file")"
done

Example code from the talk
ls -1 | while read file
do
 echo "$(stat -c"%a %A" "$file") $(md5sum "$file")"
done

select file in *
do
 stat "$file"
 break
done

unset x
(x=hello; echo "x: $x")
echo "x: $x"

unset x
{ x=hello; echo "x: $x"; }
echo "x: $x"

printf "%s\n" ${RANDOM:1:2} ${RANDOM:1:2} ${RANDOM:1:2} | sort -n

Example code from the talk
man bash |\
tr [[:space:]] "\n" |\
tr A-Z a-z |\
grep -v "^[[:space:]]*$" |\
sort |\
uniq -c |\
sort -n |\
tail -$((${LINES:-16} - 1))

echo b; echo a | sort

{ echo b; echo a; } | sort

echo "what a wonderful example" > awesome.txt
cat < awesome.txt

filename="file_$(date +%F)"
echo "$(date +%s)" > "$filename"
sleep 1s
echo "$(date +%s)" >> "$filename"

Example code from the talk
printf "%s\n"\
 "$filename: $(wc -l "$filename" | cut -d" " -f1) lines"\
 ""\
 "$(<"$filename")"

echo "$(echo "$(echo "$(echo "$(ps wwf -s $$)")")")"
echo this `echo quickly \`echo gets \\\`echo very \\\\\\\`echo
extremely \\\\\\\\\\\\\\\`echo ridiculous\\\\\\\\\\\\\\\`\\\\\\\`\\\`\``

wc -c <(echo "$PATH")
wc -c < <(echo "$PATH")

printf "%s\n" one two "three four" |\
 tee >(tac) >(sleep 1; cat) >/dev/null |\
 cat

var=$(
printf "%s\n" one two "three four" |\
 tee >(tac) >(sleep 1; cat) >/dev/null
)
echo "$var"

Example code from the talk
unset array
while read; do
 array+=("$REPLY")
done
declare -p array

unset array
WILL NOT WORK
printf "%s\n" one two "three four" |\
 while read; do
 array+=("$REPLY")
 done
declare -p array

unset array
while read; do
 array+=("$REPLY")
done < <(printf "%s\n" one two "three four")
declare -p array

Example code from the talk
diff -wyW85\
 <(echo "${examples[((I - 2))]}")\
 <(echo "${examples[((I - 1))]}") |\
 highlight --syntax bash -O xterm256 -s rootwater

words ()
print each word on new line
for word
do
 echo "$word"
done

Example code from the talk
rev_chars ()
reverse characters by word
for charlist
do local word
 while ((${#charlist}))
 do
 echo -n "${charlist:(-1)}"
 charlist="${charlist:0:(-1)}"
 done
 ((++word == ${#@})) &&\
 echo ||\
 echo -n "${IFS:0:1}"
done

rev_words ()
reverse/print each word on new line
for word
do
 echo "$(rev_chars "$word")"
done

Example code from the talk
memtop ()
list top consumers of memory on the system (...slowly)
{
 {
 echo "_PID_ _Name_ _Mem_"
 for pid in /proc/[0-9]*
 do
 printf "%s " \
 "${pid##*/}" \
 "$(<$pid/comm)" \
 "$(pmap -d "${pid##*/}" |\
 tail -1 |\
 { read a b c mem d
 echo $mem; })"
 echo
 done |\
 sort -nr -k3 |\
 head -$((${LINES:-23} - 3))
 } |\
 column -t
} 2>/dev/null

Example code from the talk
random_word ()
{
 local word= count=1;
 while :; do
 word=$(tr -dc 'a-z' < /dev/urandom | head -c ${1:-4})
 fgrep -qi $word /usr/share/dict/cracklib-small && {
 echo $count: $word
 return 0
 } || ((count++))
 done
}

for container in 172.17.0.{1..5}
 do
 printf "%s\n" "$container: $(
 ssh -o StrictHostKeyChecking=no -i ~/.ssh/docker.id_rsa $container \
 "$(declare -f random_word); random_word")"
 done

A Few Good Links

➢ http://www.gnu.org/software/bash/

➢ http://tiswww.case.edu/php/chet/bash/NEWS

➢ http://tldp.org/LDP/abs/html/index.html

➢ http://wiki.bash-hackers.org/doku.php

➢ http://git.jpnc.info/parssh/

http://www.gnu.org/software/bash/
http://tiswww.case.edu/php/chet/bash/NEWS
http://tldp.org/LDP/abs/html/index.html
http://wiki.bash-hackers.org/doku.php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

